Search results for "tunable laser"
showing 10 items of 41 documents
Dissipative Solitons, a Novel Paradigm for Mode-locked Lasers
2013
The concept of a "dissipative soliton" provides an excellent framework for understanding complex mode-locked laser pulse dynamics from a unified picture. It has stimulated innovative laser cavity designs in the past few years. This tutorial lecture provides conceptual pictures illustrated with universal dynamics, highlights recent achievements and prospects for mode-locked laser development.
Triple resonant four-wave mixing: A microwatt continuous-wave laser source in the vacuum ultraviolet region at 120 nm
2012
We present a vacuum ultraviolet laser source by four-wave mixing in mercury vapour based on solid-state laser systems. Maximum powers of 6μW were achieved with an increase of four orders of magnitude in efficiency.
Active Q-switched distributed feedback erbium-doped fiber lasers
2005
This letter presents a distributed feedback fiber laser that operates in an actively controlled Q-switched regime. The laser is based on a Bragg grating made in an erbium-doped fiber. The grating has a defect induced by a magnetostrictive transducer that configures the distributed feedback laser structure. The phase shift generated by the defect can be dynamically modified by an electric current, permitting active Q-switching of the laser. The laser generates pulses of 75 ns duration and the repetition rate can be continuously adjusted from 0 to 10 kHz.
Isobar suppression in AMS using laser photodetachment
2008
Abstract We are investigating the possibility of using laser photodetachment of negative atomic and molecular ions as an additional isobaric selection filter in accelerator mass spectrometry. The aim of this study is to find a possibility to further improve the detection limit for long-lived heavy radionuclides at AMS facilities. We will focus on the astrophysical relevant radionuclide 182Hf, which is one of the isotopes measured with the 3 MV tandem AMS facility VERA (Vienna Environmental Research Accelerator) at the University of Vienna. Laser-induced isobar suppression is also of importance for radioactive-beam facilities. The present detection limit for measuring the isotope ratio 182Hf…
Acoustically Q-switched single-frequency fibre laser
2007
A dual-wavelength tunable laser with superimposed fiber Bragg gratings
2013
We report a dual-wavelength tunable fiber laser. The cavity is formed by two superimposed fiber Bragg gratings (FBGs) and a temperature tunable high-birefringence fiber optical loop mirror (FOLM). FBGs with wavelengths of 1548.5 and 1538.5 nm were printed in the same section of a fiber using two different masks. The superimposed FBGs were placed on a mechanical mount that allows stretch or compression of the FBGs. As a result of the FBG strain both lines are shifted simultaneously. Dual-wavelength generation requires a fine adjustment of the cavity loss for both wavelengths.
Simple digital system for tuning and long-term frequency stabilization of a CW Ti:Sapphire laser
2015
We have implemented a simple digital system for long-term frequency stabilization and locking to an arbitrary wavelength of the single-frequency ring CW Ti:Sapphire laser. This system is built using two confocal Fabry-Perot cavities, one of which is used to narrow the short-term linewidth of the laser and the other to improve the long-term stability of the laser frequency. The length of the second cavity is stabilized using the radiation from an external-cavity diode laser locked to an atomic transition. Our system is an improvement of a commercial Tekhnoscan laser lock. This system has been successfully used in our experiments on high-resolution laser spectroscopy of ultracold rubidium Ryd…
Finely tunable laser based on a bulk silicon wafer for gas sensing applications
2016
In this work a very simple continuously tunable laser based on an erbium ring cavity and a silicon wafer is presented. This laser can be tuned with very fine steps, which is a compulsory characteristic for gas sensing applications. Moreover the laser is free of mode hopping within a spectral range sufficiently wide to match one of the ro-vibrational lines of a target molecule. Here the proposed laser reached, at ∼1530 nm, a continuous tuning range of around 950 pm (>100 GHz) before mode hopping occurred, when a silicon wafer of 355 μm thickness was used. Additionally, the laser can be finely tuned with small tuning steps of <12 pm, achieving a resolution of 84.6 pm °C-1 and by using a therm…
High-Sensitivity Whispering Gallery Mode Humidity Sensor Based on Glycerol Microdroplet Volumetric Expansion
2021
We demonstrate a highly sensitive whispering gallery mode (WGM) relative humidity (RH) sensor based on a glycerol microdroplet. WGMs were excited using a 760 nm tunable semiconductor laser. We used free space coupling, which is effective when using a liquid resonator. A detailed analysis of different parameters influencing the sensor’s characteristics (sensitivity, hysteresis, resolution, stability, and temperature) is presented. The sensitivity of the sensor is one of the highest reported (2.85 nm/% RH in the range 50–70% RH with the resolution 1 × 10−4% RH). This type of humidity sensor has several advantages, such as high sensitivity, extended lifetime, good repeatability, and low cost, …
Resonant Ionization Laser Ion Source for Radioactive Ion Beams
2009
A resonant ionization laser ion source based on all‐solid‐state, tunable Ti:Sapphire lasers is being developed for the production of pure radioactive ion beams. It consists of a hot‐cavity ion source and three pulsed Ti:Sapphire lasers operating at a 10 kHz pulse repetition rate. Spectroscopic studies are being conducted to develop ionization schemes that lead to ionizing an excited atom through an auto‐ionization or a Rydberg state for numerous elements of interest. Three‐photon resonant ionization of 12 elements has been recently demonstrated. The overall efficiency of the laser ion source measured for some of these elements ranges from 1 to 40%. The results indicate that Ti:Sapphire lase…